2020-03-20 12:53
Учёные-информатики вышли на новые рубежи в деле проверки решений задач вычислительными методами. При этом они нашли ответы на важнейшие открытые вопросы квантовой механики и чистой математики.
В 1935 году Альберт Эйнштейн, работая с Борисом Подольским и Натаном Розеном, исследовал возможность, открытую новыми законами квантовой физики: две частицы могут находиться в запутанном состоянии, когда их взаимосвязь не нарушают даже огромные расстояния.
В следующем году Алан Тьюринг сформулировал первую общую теорию вычислений, и доказал, что существуют задачи, которые никогда не смогут быть решены компьютерами. Эти две идеи произвели революцию в тех областях наук, к которым они относятся. Кроме того, казалось, что они не имеют никакого отношения друг к другу. Но теперь доказательство MIP* = RE их скомбинировало, что привело к решению множества задач в сфере информатики, физики и математики. Квантовые компьютеры производят вычисления, оперируя запутанными квантовыми битами (кубитами), а не классическими нулями и единицами. Новое доказательство указывает на то, что такие компьютеры, теоретически, могут быть использованы для проверки решений огромного количества задач. Связь между квантовой запутанностью и традиционными вычислениями стала для многих исследователей большой неожиданностью. Мигель Наваскес (Miguel Navascu?s) занимается квантовой физикой в Институте квантовой оптики и квантовой информации в Вене. «Это было полным сюрпризом», — сказал он, комментируя доказательство. Соавторы доказательства поставили перед собой цель определить границы подхода по проверке решений вычислительных задач. Этот подход включает в себя квантовую запутанность. Обнаружив эти границы, исследователи пришли к решению двух других задач, что явилось едва ли не побочным результатом их работы. Речь идёт о гипотезе Цирельсона в физике, касающейся математического моделирования квантовой запутанности, и связанной задачи в чистой математике — проблемы Конна в теории алгебр фон Неймана (проблемы вложения Конна). В итоге же результаты применения доказательства вызвали в математике и физике нечто вроде эффекта домино. «Все идеи относятся к одному и тому же периоду. Приятно видеть то, что они снова сошлись столь эффектным образом», — говорит Генри Юэнь (Henry Yuen) из Университета Торонто – один из соавторов доказательства. Помимо него в этой работе участвовали Чжэнфэн Джи (Zhengfeng Ji) из Технологического университета Сиднея, Джон Райт (John Wright) из Техасского университета в Остине, Ананд Натараджан (Anand Natarajan) и Томас Видик (Thomas Vidick) из Калифорнийского технологического института. Все пять учёных работают в сфере компьютерных наук.
Комментариев нет:
Отправить комментарий